Sourcecode: Example6.c

Sourcecode: Example6.c

] COLLABORATORS
TITLE :
Sourcecode: Example6.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example6.c iii

Contents

1 Sourcecode: Example6.c 1
L1 Example6.C oo e e e e 1

Sourcecode: Example6.c

Chapter 1

Sourcecode: Example6.c

1.1 Example6.c

/*k'k*k*k*******‘k‘k*k********k‘k‘k*k*k***‘k‘k‘k*k'k************************
/ %

/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC)
J*x —mmm e e
/ *

/* Manual: AmigaDOS Amiga C Club

/+ Chapter: Advanced Routines Tulevagen 22

/+ File: Example6.c 181 41 LIDINGO

/+ Author: Anders Bjerin SWEDEN

/* Date: 93-03-17

/* Version: 1.1

/ *

/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC)

/ *

/* Registered members may use this program freely in their
/ * own commercial/noncommercial programs/articles.

/ %

/**

/* This example will examine some of the "lowest" parts in
/* AmigaDOS. It will look up and print all Assigns, Volumes
/+ and Devices AmigaDOS knows about. Please note that we

/+ will dig fairly deep down into the system, and only

/* experienced programmers are recommended to do this. I

/+ have added a lot of comments to help you, and if you cut
/* out parts of this example carefully you should be able
/* to use it in your own programs.

/ *

/+ This example can be used with all versions of the dos

/* library.

/+ Include the dos library definitions: =/
#include <dos/dos.h>

/* Include memory definitions: (MEMF_ANY...) =/
#include <exec/memory.h>

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Sourcecode: Example6.c

/+* Now we include the necessary function prototype files:

#include <clib/dos_protos.h> /* General dos functions...
#include <clib/exec_protos.h> /* System functions...
#include <stdio.h> /* Std functions [printf()...]
#include <stdlib.h> /* Std functions [exit()...]

/* Set name and version number: =*/
UBYTE *version = "S$VER: AmigaDOS/Advanced Routines/Example6 1.1";

/* 1. Declare an external global library =/
/ * pointer to the Dos library: */
extern struct DosLibrary xDOSBase;

/* Declare our own functions: */

/* Our main function: =/
int main(int argc, char xargv[]);

/* Prints BCPL strings: =/
void PrintBSTR(BSTR string_bstr);

/* Main function: =/

int main(int argc, char *argv[])

{

/+ Temporary BCPL pointer used to convert BPTRs into C pointer:

BPTR temp_bptr;

/+ Pointer to the RootNode structure: =/
struct RootNode xrootnode_ptr;

/+* Pointer to a DosInfo structure: =/
struct DosInfo xdos_info_ptr;

/* Pointer to the first DosList structure: =/
struct DosList xfirst_doslist_node;

/* Pointer to the current (the one we are x/

/* working with) DosList structure: */
struct DosList xdoslist_node;

/* 2. Get a pointer to the RootNode structure: =/
rootnode_ptr = DOSBase->dl_Root;

/* 3. Get a BCPL pointer (BPTR) to the DosInfo structure: =/

*/
*/
*/
*/
*/

*/

Sourcecode: Example6.c

3/5

temp_bptr = rootnode_ptr->rn_Info;

/* 4. Convert the BCPL pointer into a normal C pointer: =/

/+ (If I say that I hate BCPL with its acquired */
/* pointers and strings I do not exaggerate...) */
dos_info_ptr = (struct DosInfo %) BADDR(temp_bptr);

/* Before we may start to examine the DosInfo structure we

/* have to turn off the multitasking by calling the Forbid()
/+ function. As soon as we have finished using the DosInfo

/* structure we must of course turn the multitaskin on again,
/+ by calling the Permit () function.

/ *

/* Note that while the multitasking is OFF we must be very
/* careful so we do not try to wait for some external event.
/+x If we try to wait for something to happen "outside" our

/* program we will sit and wait forever since nothing can

/* happen outside our program as long as the multitasking is
/* off. You must therefore NEVER use the Wait () or similar

/+ functions after you have forbidden other programs to run.
/+ As soon as we turn the multitasking on again, by using the

/+ Permit () function, we may of course start to wait for
/* external events.
/ *

/* A program that turns off the multitasking is interrupting
/* other programs. You must therefore try to turn the
/+ multitaskin on again as soon as possible.

/ *

/* With the new Release 2 you should actually use the special
/* LockDosList () and NextDosEntry () functions instead of

/* using the Forbid() and Permit () functions. However, since
/+ this program should run on all Amigas we stick to the old
/+ methods. (See "Amiga DOS" chapter for more information on
/* the new LockDosList () and NextDosEntry () functions.)

/+ 5. Turn the multitaskin OFF: =/
Forbid() ;

/* 6. Scan the "DosList" nodes... x/

/+ Get a BCPL pointer (BPTR) to the first "DosList" node: =/
temp_bptr = dos_info_ptr->di_DevInfo;

/% Convert the BPTR into a C pointer: x/
first_doslist_node = (struct DosList %) BADDR(temp_bptr);

/* Start with the first node: */
doslist_node = first_doslist_node;

/* Check all nodes: x/
while(doslist_node)

{
PrintBSTR(doslist_node—->dol_Name);

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Sourcecode: Example6.c

4/5

/+ Handly little function which prints BCPL strings

/ *
Pe

printf (" - ");

/* Print type: */
switch(doslist_node->dol_Type)
{

case DLT_DEVICE: printf ("Device ")
case DLT_DIRECTORY: printf("Assign ")
case DLT_VOLUME: printf ("Volume ")
case DLT_LATE: printf("Late-binding Assign")
case DLT_NONBINDING: printf("Non-binding Assign ")
case DLT_PRIVATE: printf ("Private node ")
default: printf ("Unknown type! ")

}

printf ("\n");

/* Get a BPTR to the next node: =*/
temp_bptr = doslist_node->dol_Next;

/* Convert the BPTR into a C pointer: =/

doslist_node = (struct DosList x) BADDR(temp_bptr);

7. Turn the multitaskin ON again: =*/
rmit () ;

void PrintBSTR(BSTR string_bstr)

{

/ *
UB

/ *
UB

/ *

in

Temporary string pointer =/
YTE *string_ptr;

The length of the BCPL string: */
YTE length;

Simple loop variable: =/
t loop;

Ne Ne Ne Ne Ne N

~.

(BSTRs) :

break;
break;
break;
break;
break;
break;

*/

/+ Conver the BSTR into a normal C pointer to a BCPL string:

st

/ *
/ *
/ *
/ *
/ *

ring_ptr = BADDR(string_lbstr);

Get the length of the BCPL string: (A BCPL string does not
contain a NULL sign in the end, but uses instead the first

byte to tell how many characters the string contains.

A

BCPL string (BSTR) can therefore not contain more than 255

characters.

length = string ptr[0 1;

/ *

Print BCPL string: =x/

for(loop=1; loop <= length; loop++)

putchar (string_ptr[loop]);

*/

*/
*/
*/
*/
*/

Sourcecode: Example6.c

5/5

	Sourcecode: Example6.c
	Example6.c

